

High precision time series regression

for Automotive Powertrain Development & More

Timo Hagenbucher & Michael Grill

Introduction: Our use-case

From Measurement to Al-based Digital Twins

Vehicle

Measurement Data

Al Model of Powertrain

Digital Twin Instance

- Investigate test drives that are not included in the training data
- Investigate control strategies

Virtual Test Drive

- Route
- Speed Profile
- Traffic Situation
- Weather

Digital Twin Instance

Analysis

Introduction: Our use-case

From Measurement to Al-based Digital Twins

Vehicle

Measurement Data

Digital Twin Instance

- What are the challenges?
- What are the special issues in the powertrain?

- highly automated process@FKFS
- training duration ~16h
- 14x RTX3080/3090 @ FKFS
- cloud services possible

Example

E-Motor: Temperature of stator

BMW i4 eDrive 40 (G26) EESM (rear), max. 250 kW/430 Nm

Example

E-Motor: Temperature of stator

BMW i4 eDrive 40 (G26) 30 Nm Typical task: 300 Al-based temperatur model $T = f(T_Start, t, v(t), P(t), ...)$... time series regression Challenges -300 Time dependencies are crucial High precision is crucial Inertias (mechanical, thermal, chemical, fluid) with different time scales are characteristic of the powertrain ZU 500 1000 1500 2000 2500 3000 3500 4000 Time in s

Introduction: Typical Neuronal Networks

Example: Image Recognition

Layer #2:

Layer #1:

CNN and dense NN are stateless:

the prior experience has no influence on the outcome

Time-Series Regression

external

Time-Series Regression

Strenghts:

- Memory of previous timesteps via states
 - long- and short term memory
- Ability to forget irrelevant information
- Very high simulation speed > 100x RT

Challenges:

- Initialization of states is non-trivial
- Error accumulation over time
- Good training strategies necessary

external 11.03.2025 ——

Demonstrator Project

Ford Galaxy FHEV

- Test vehicle is rented and unmodified
- Data-logging via OBD2-port
- Only openly available control unit signals are utilised (no OEM support)
- 160 cycles covering over 7400 km

Source: https://www.ford.de/fahrzeuge/ford-galaxy

Results

FKFS RESEARCH IN MOTION.

Temperature Model of Battery and E-Motor

Ford Galaxy Hybrid:

- 1x ICE, 2x E-Motor
- 7400 km of real world driving
- Random data split:
 20% test, 30% validation,
 50% training

Profile: Montecchio – San Gimignano (108 km, 27 °C)

Results: Ford Galaxy Hybrid

Temperature Model

Results: Ford Galaxy Hybrid

Temperature Model

Bissone (I) -> Montecchio (I)

external

Results: BMW i4 eDrive 40

Temperature Model (E-Motor)

Results: Training on dynamic test bench data

RESEARCH IN MOTION.

Overview

- Permanent Magnet Synchronous Motor (PMSM)
- max. 32 kW
- matches with the prototype of a German OFM

Results: Training on dynamic test bench data

Temperature Model

Conclusion

Digital twins based on measurement data & Al

- Very high accuracy is achievable
- Models can be trained in ~16 hours (high degree of automation)
- Very high simulation speed 100 10.000x faster than real-time
- Expert knowledge on the network architecture of recurrent neural networks and on the handling of their internal memory states necessary
- Expert knowledge of the domain is crucial: very few model inputs to enable "learning" of the physics.

Other Use-Case: fleet measurements

New approach to analyse real word driving data

High prediction quality of the Digital Twin is crucial for this application

Vehicle

Measurement Data

Al model of vehicle

Virtual test drive

B

...

Digital twin instances

exactly same ...

- route
- speed profile
- traffic situation
- weather

Digital twin instances

Difference between digital twins

external

11.03.2025

Other Use-Case: Analysis of aging effects

Based on real world driving data

Monitoring the scope of validity of the Al models is crucial!

0 ...

30.000 km

60.000 ...

90.000 km

Measurement Data

Al model of vehicle

Virtual test drive

exactly same ...

- route
- speed profile
- traffic situation
- weather

Digital twin instances

can Aging

Other use-case: Motorsports

Motorsports: Racing strategy and laptime optimization based on Digital Twins

Vehicle

Measurement Data

Al model of vehicle

Virtual test drive

10.000x faster than RT

Digital twin Digital twin

FKFS is proud to be AI partner of GM motorsports

external 11.03.2025

Thank you for your attention.

Dr.-Ing.

Michael Grill

Automotive Powertrain Systems 3
Artificial Intelligence and Simulation
Pfaffenwaldring 12 | 70569 Stuttgart

fkfs.de