Generative AI oder doch lieber selber denken" - what do you think?

Thomas Jirku (IBM) Technical Sales thomas.jirku@at.ibm.com

prompt: an ibm machine that generates ideas in style of GREGORY CREWDSON

A little history on Al

Expert Systems

Hand-crafted symbolic representations

Machine Learning

Task-specific hand-crafted feature representations

Deep Learning

Task-specific learnt feature representations

Foundation Models

Generalizable & adaptable learnt representations

(often synonym to Large Language Models as most popular application is with language)

Foundation Models are...

Pre-trained on unlabeled datasets of different modalities (e.g., language, time-series, tabular)

Leverage self-supervised learning

Learn **generalizable & adaptable data representations** which can be effectively used in **multiple downstream tasks** (e.g., text generation, machine translation, classification for languages)

Note: while transformer architecture is most prevalent in foundation models, definition not restricted by model architecture

Inspired from Kate Soul's YouTube VIDEO

Foundation models establish a new paradigm for AI capabilities

Traditional AI models

- Individual siloed models
- Require task specific training
- Lots of human supervised training

Foundation Models

- Massive multi-tasking model
- Adaptable with minimized training
- Pre-trained unsupervised learning

Enhanced capabilities

- Summarization
- Conversational Knowledge
- Content Creation
- Code Co-Creation

Key advantages

- Lower upfront costs through less labeling
- Faster deployment through fine tuning and inferencing
- Equal or better accuracy for multiple use cases
- Incremental revenue. through better performance

up to **70% reduction** in certain NLP tasks

explainability

fairness

robustness

transparency

Granite LLM's on watsonx.ai

Trusted

IBM's approach to AI model development is grounded in core principles of trust and transparency.

What were the datasets and sources used?

Raw Data	6 Petabytes of multi- lingual raw data
English Text Extraction	6.5 Terabytes of English data
Remove duplicates	4.9 Terabytes of deduplicated data
Remove HAP	3.8 Terabytes of usable data
Remove Poor Quality	2.1 Terabytes of usable data
	Granite Decoder-only Transformer

1T Tokens of data for training granite.13b

Model

e.g. Llama, Falcon, GPT-3

What makes IBM models safe for enterprise use?

- Models were reviewed against IBM's extensive data ٠ governance practices, corresponding to data clearance and acquisition; document quality checks; pre-processing data pipelines, including tokenization, data de-duplication, etc.
- Granite models were trained on data scrutinized by IBM's own ٠ HAP detector – to detect and root out objectionable content, benchmarked against internal and public models
- IBM deploys regular, ongoing data protection safeguards, . including monitoring for websites known for piracy or other offensive materials, and avoid those websites

granite.13b.chat

Supervised Fine Tuned

Contrastive Fine Tuned

EU AI ACT will highly regulate critical AI models

European Commission has outlined AI regulations that lay down

- harmonized rules for market placing, go-live and use of AI
- prohibitions for "unacceptable risk"
- requirements for "high-risk"
- harmonized transparency rules for "limited risk"
- rules on monitoring, market surveillance and governance
- measure in support of innovation

Regulation applies to:

- providers placing systems/services in EU regardless of location
- Users of AI systems in EU
- Providers and users of AI where output of the system is used in the EU

EUROPEAN	UNACCEPTABLE RISK Prohibited AI systems
Bruisch, 31.4.2021 COM(2021) 306 final 2021/0106 (COO) Proposal fix s REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED RILLES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS (SEC(2021) 167 final) - (SWD(2021) 84 final) - (SWD(2023) 85 final)	HIGH RISK A systems with requirements for risk mgmt., governance, explainability, human oversight, etc.
EN EN	AI systems with specific transparency obligations MINIMAL RISK

Thomas Jirku, IBM

LinkedIn

